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An important class of single-error-correcting codes for binary and nonbinary
discrete asymmetric channels recently discovered by Varshamov is studied. Among
other things, a wide generalization of Varshamov’s construction is given, and the
complete weight distribution of Varshamov’s codes is calculated.

l. Introduction

Recently Varshamov (Ref. 1) discovered an impressive
class of single-error-correcting codes for the binary asym-
metric, or “Z” channel. (The reason for the letter “Z”
appears in Fig. 1.)

In the Z channel, a 0 is always transmitted reliably but
1 may be received as either 1 or 0. Actual physical chan-
nels, in particular the Ground Communications Facility
(GCF), usually exhibit some degree of asymmetry, and
s0 a study of the Z channel provides insight into the effects
of asymmetry on practical data-processing systems.

It is the object of this paper to extend Varshamov’s
work in several directions. In Subsection 1I, Varshamov’s
codes will be introduced, and a larger class of single-
error-correcting codes will be described that contain Var-
shamov codes as a proper subset. Estimates on the number
of codewords in these codes will be obtained, and a gen-
eral upper bound on the number of words in any single-
error-correcting code for the Z channel will be obtained.
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In Subsection I1I, the exact number of codewords in each
of Varshamov’'s codes will be calculated; indeed the com-
plete weight distribution of each code will be found. (In
fact in Subsection IIT we will consider g-ary, rather than
binary, codes, where g is an arbitrary integer.)

Il. A Generalization of the Binary
Varshamov Codes

Varshamov’s single-error correcting codes for the binary
Z channel may be described as the set of all vectors
(e1, e, ' ,e,) with ¢; =0 or 1, such that

S ie;=d(modn + 1)

i=1
for a fixed d. There are, then, n + 1 distinct Varshamov
codes of length n, one for each choice of d. A generaliza-
tion of this construction that immediately suggests itself
is the following: let G be an arbitrary group of order
n+ 1, and let g;,g;, - * * , g be an ordering of the non-
identity elements of g. For a fixed d € G consider the set
of {0,1} vectors (e, €., * - - ,e,) such that

T1 &= M
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Varshamov’s codes are the special case where G is a cyclic
group. Unfortunately in this generality the sets of {0, 1)}
vectors thus formed are not necessarily single-error cor-
recting codes for the Z channel. We must restrict both the
group G and the ordering of the elements of G, as in
Theorem 1.

Theorem 1

Let G be a group of order n + 1 such that every ele-
ment commutes with all of its conjugates (e.g., if G is
abelian or nilpotent of rank 2 this condition is satisfied).
Let g1, 8., - - -, g« be an ordering of the nonidentity ele-
ments of G with the property that the conjugacy classes
appear serially; ie., every conjugacy class appears as a
set of consecutive elements D Ginet, " 5 ek 1D the
ordering. Then for every d G, the set of {0,1} vectors
(e1, €5, - - -, e,) which satisfy Eq. (1) is a single-error cor-
recting code for the Z channel.

Proof:

We first observe that no two vectors satisfying Eq. (1)
differ in only one position; for if (e,, - - - ,e;, - - - ,e,)
and (e, - - - ,e;, - -+, e,) both satisfy Eq. (1), we would
have

wigiw, = d = w,w,
where
wo g w=gp
But then g; = 1, a contradiction. Also, it is easy to prove
that there cannot be two vectors such that a single error

in one produces the same result as a single error in the
other; for in such a case there would result an equation

W15 Wy = d = Wy W, Z ;W5

Then g; = w;'g,w,. and so w,, being a product of ele-
ments that lie between the conjugates g; and g; com-
mutes with g; and so g; = g;, another contradiction.

Of course we would like to know the number of code-
words in each of the codes constructed in Theorem 1.
Unfortunately this is a very difficult problem, for which
we have only partial solutions. If G is cyclic, ie., for
Varshamov’s original codes, a complete solution will be
given in Subsection III. In the general case, we make the
observation that the 2" {0, 1} vectors are distributed into
n + 1 codes and so at least one such code contains at least
2"/(n + 1) codewords. On the other hand, Hamming’s
bound says that a single-error-correcting code for the
binary symmetric channel has at most 2*/(n + 1) code-
words. Thus unless n = 2™ — 1 for some m the asymmetric
channel will support a larger single-error-correcting code
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than the symmetric channel will. If n = 2™ — 1 for some
m the assertion very probably remains true, but the codes
of Theorem 1 cannot be used to demonstrate that fact,
because of Theorem 2.

Theorem 2

If |G| = 2™, then all of the codes defined in Theorem 1
contain 2*"-1-" codewords; i.e. no more than the Ham-
ming codes of the same length.

Proof:

It is easier to prove the more general statement that
if (g1, 8, - - ,g,) is a sequence of elements of G such
that every element with the possible exception of 1
appears at least once, then the number of {0,1} vectors
(ei,es, - * ,e,) such that

r

IT gi=d (2)
i=1
is independent of d. To prove this fact we induct on m,
the case m = 1 being easily treated. For m > 1, let 2541
be an element of order 2 in the center of G. For con-
venience we assume g, = z. Then if ¢ is the homomor-
phism from G - G/{z}, and if Eq. (2) holds, we have

TT ¢ (g)" = ¢ (d) ®
Furthermore, every element 541 of G/{z} occurs among
the ¢ (g;), and so by induction the number of vectors
(e, - - - ,e,) which satisfy Eq. (3) is independent of d.
But if Eq. (3) is satisfied it follows that

ﬁgfiZd or dz
1=2

and so there is a unique choice of e, that forces Eq. (2)
to hold.

Although Theorem 2 shows that the codes of Theorem 1
are unimpressive when n = 2™ — 1, there is good reason
to believe that codes of these lengths do exist with more
than 2*/(n + 1) codewords, if m==3. For n =7, a code
with 18 codewords exists:

0000000 1100100 0101101
01000610 1010010 0110110
0010001 1001001 1100111
0001100 1110001 1011101
01110060 1001110 1111010
0000111 0011011 1111111
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It is in fact possible to show that no single-error-
correcting code of length 7 for the Z channel can have 19
words. The above code was found ad hoc by hand calcu-
lation. A computer search might yield an n =15 code
with more than 2'* words, but a general construction is
desirable.

We conclude this section with a general upper bound on
the number M,, of codewords in a single-error-correcting
code for the Z channel.

Theorem 3
Mn = Bn+1

where B,,, is the maximum number of words possible for
a single-error correcting code for the symmetric channel.

Proof:

There are two asymmetric binary channels: one that
changes O’s to 1’s, and one that changes 1’s to 0’s. It is an
odd but easily checked fact that a code which corrects ¢
errors on one of these channels will also correct ¢ errors
on the other. We use this fact to obtain the upper bound
of Theorem 3.

For a given code of length n for the Z channel, con-
struct a new code of length n + 1 by adding a “parity”
bit to each codeword that is 0 if the weight of the code-
word is congruent to 0 or 1 (mod 4) and is 1 if the weight
is =2 or 3 (mod 4). Now this extended code will correct 1
error on the symmetric channel, since an error in the
parity bit will be obvious (the first n bits will be a code-
word from the original code, but the parity bit will not
check), and if an error occurs elsewhere the parity bit will
indicate whether it was a 0-> 1 or a 1 — 0 transition, and
thus the error can be corrected. Thus M, =< B,,.,, the maxi-
mum number of words in a single-error-correcting code
for the symmetric channel.

Corollary
n+1
=
M, = n+2
Proof:
2n+1
-2
Buo = n+2

by Hamming’s bond.
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Remark:

It is very probable that Theorem 3 is quite weak, and
that

2n
n-+1

M, < ~

for large n.

l1l. The Weight Distribution of Varshamov’s
Codes

Let g, m, and d be natural numbers satisfying g > 1,
m>1 1=d=m. Set n =m — 1. Let C(q,n,d) be the

set of all n-tuples (vectors) e = (e1, €, * * * ,ea), Where
e;e{0,1,2, - - ,g—1}, and
S ie; =d (mod m) )
1

Then C(q,n,d) is a single-error-correcting asymmetric
code in the sense of Varshamov. Since multiplying Eq. (4)
by a unit modulo m merely permutes the e;’s, from now
on we assume without loss of generality that d divides m
(written d|m).

If e = (e, -,

|e| by

e,) €C(q,n,d), define the weight

le] =e.+ e + - - - + e, (real addition)
Although this definition of weight differs from the usual
Hamming or Lee weights (except when g = 2), it is in
accordance with Varshamov’s usage.

Let ¢; = c¢; (g, n,d) be the number of vectors in
C(g,n,d) of weight i, and define the weight enumerator
W (y) = W(q,n,d;y) by

W@Zﬁc

W (y) is actually a polynomial since ¢; =0for i>(g—1)n
Finally let ¢ = c(q,n,d) = |C (g, n,d)|, so c =3 c; =
W (1). Our object is to obtain an expression for W (y) and
for c(gq,n, d).

Theorem 4
We have
(q,n d;y) =
(1 — yloa/ds,0yndto.a/to
m(l = yq)z Z“(g (L= yloymro

g";’
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where (fg, q) is the g.c.d. of fg and q.

Before proving Theorem 4, we first discuss some
consequences.

Corollary 1

Let k be the largest factor of m relatively prime to q.

Then
cland) =3 1) @

fltdy ik

q(M/fa)—l

Proof of Corollary 1:

Set y = 1 in Theorem 4. For a given choice of f and g,
the factor 1 — y appears 1 + m (fg, q)/fg times in the
numerator and 1 + m/fg times in the denominator. Hence
the term corresponding to f, g will be 0 unless (fg, q) = 1.
Hence we may assume f|(k, d) and

’_k_
l;
SO

1—y

elgnd) =y
(1— yfoq)m/fy
1 — yfy)M/fg vt
£l (k, d) 91 &
= ——1— f (g) q(m/fg)—l
m M

fidd Ik

Remark:

Let M (q,r) be the number of g-symbol “necklaces”
with 7 beads and with no symmetry. As is well-known

2 g

d\r

M(q,7)=
Hence, by Corollary 1,

i T ()

Tk, d)

k
where M (q'”/", 7) > 0. Hence we have:
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Corollary 2
If e|d|m, then
c(g,n,d)y=c(q,n,e)
with equality if and only if every prime dividing d/e also
divides q. In particular, ¢ (g, n, d) is maximized (for fixed

g, n) at precisely those d|m such that every prime divisor
of m/d also divides g, and therefore for d = m.

Corollary 3

For fixed g, n, we have

max C(qan d) =c q,n m) E ¢ q<rn/h) -1
dim

hik

where k as usual is the largest factor of m relatively prime
to q.

Proof of Corollary 3:
By Corollary 2, maxc(q,n,d) = c(q,n,m). By Corol-
lary 1,
c(g,n,m) E f E g) g/ -1
fik
mEqWWE (7)) m=re
kK flh
But
h
E fu <7> =¢(h)
FIk

so the proof follows.

Remark 1:

The number N (¢, 7) of inequivalent #-symbol necklaces

with r beads is
1
r/h
r E ¢ (h)t/

kv

IIenCC
> qm >

JPL TECHNICAL REPORT 32-1526, VOL. XIV



This suggests that a combinatorial proof of Corollary 3
may be possible, especially in the case (m,q) =1
(so k =m), but we have been unable to find one. More
generally, if (m, ) = 1 and n; is the number of g-symbol
necklaces with m beads summing to i (where the symbols

are0,1, - - - ,q — 1), then it follows from Theorem 4 that
N, =¢,+cis+ - F Cigar
since
o1
Zmy’ = ;Z}ﬁ DA +y g+ - Fyan iy

fim

This suggests that with each word e € C (g, n, m) of weight
i, one can associate a g-symbol necklace with m beads of
weight i +f for each j=0,1, - - - g — 1, but we have
been unable to find such a correspondence.

Remark 2;

The Hamming bound for symmetric g-ary single-error
correcting codes of length n =m — 1 is g™ */m. Hence
by Corollary 3, Varshamov’s code in the optimum case
d = m does better than any symmetric code as long as m
has a prime divisor not dividing q. As remarked in Sub-
section II, we have been unable to do better than the
Hamming bound when every prime divisor of m divides
q, except for the special cases for ¢ = 2 listed there. The
largest code has 18 elements (though ¢ (2,7, 8) = 186).
There is also a 12-element binary code of length 6 and a
32-element binary code of length 8, both exceeding the
cardinalities given by Corollary 3 of ¢(2,6,7) = 10 and
c(2,8,9) = 30. These codes are:

n=6: 000000 011001
110000 010110
001100 111100
000011 110011
101010 001111
100101 111111

n=8 00000000 10101000
11000000 10010010
00110000 10000101
00001100 01100001
00000011 01010100
11110000 01001010
11001100 00100110
11000011 00011001
00111100 01010111
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00110011
00001111
11111100
11110011
11001111
00111111
11111111

01101101
01111010
10011110
10101011
10110101
11011001
11100110

Proof of Theorem 4:
Set

F(z) = (1 +yz+y*z2+ - - - + yr-izr?)
X (1 + yzz + y2z4 + . -+ yq-1z2(q~1))
PN (1 +yzn +y2z2n+ ... _;_yq—lzn(q»l))

=T (1 — wziy) (1 — o?2y) - - - (1 — 0% '2ly)

i=1

where o is a primitive g-th root of 1. Let G(z) be the
unique polynomial in z of degree < m such that

F(2)=G (z) (mod z™ — 1)

Then the coefficient of z¢ in G (z) is W (g, n,d;y), since
choosing a term yix'/ from the i-th factor

1+ yzi + yzzzi + -+ yq—1z(q—1)i

of F (z) corresponds to choosing e; = j in Eq. (4).

Now G (z) is the unique polynomial of degree < m
satisfying F (£) = G (£) for every root £ of 27 — 1 = 0 i.e.,
for every m-th root of unity ¢. We shall therefore now

evaluate F (£). Suppose e|m and ¢ is a primitive e-th root
of 1. Then

qg-1

T T (1-wly)

Il

F(Z)

=1

s
o

i
q-1 q-1 (m/e}-1
=[ (1—wiy)‘1}' T
j=1 j=1 k=0
1

(1 — wjeye)m/e

72‘ (1 — miékeny)

|
<

- 1—- y! j=1
(1 — y) (1 — yeq/(e,q))mq(e,q)/e
T A= a—

since o is a primitive q/(e, q) root of 1.

We therefore have

_ (l — y) (1 — yell/(e,q))m(e,LI)/e
c@y—z: g — G @
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c _{ L,if ¢ is a primitive e-throot of 1
0= { 0, if £™ = 1 but ¢ is not a primitive
e-th root of 1.

We claim

At ') Drar:

where the sum is over all primitive e-th roots of 1. Let

zm — 1
z—éo

H(z) =

(where ¢, is a primitive e-th root of 1). If i =1, 54 &,
then H () = 0. Also H (&) = H' (&) = m ™ = mE3.
Hence G (&) = (1/m) (m¢&¢,) = 1, while G, (¢) =0 if
¢ =1 and ¢ is not a primitive e-th root of 1. This proves
the claim.

Summing a geometric series, we have
1=z

1=z

=1+¢2+ %2+

{(z"—1)
z—{

+ C—mzm
Interchanging ¢ with ™ in the sum for G, (z) gives

9= iy
1—yq

1 — yeq/(e,q))m(e,q)/e

Hence
W (g, n,d;y) = coefficient of 2% in G (z)
1 (1 — y) (1 —_ yeq/(e,q))mw,q)/e
S om(l—yY) Z!m: (I —y)mre

3

¢=primitive
e-th root
of 1

It is well-known that 3¢ = u (e), where the sum ranges
over all primitive e-th roots of 1. Now {* is a primitive
e/(d, e) root of 1, so

Z P=pa de) ()

e (d 6)
of 1
Hence
l 1 —_ yCQ/(e (I) m(e,q)/e
w (q; n, d; y) = R yq> -5. (1 — e)m/e
elm
e (e
L P R
*1d.e)

To complete the proof we need the following result:

Lemma: { Brauer-Rademacher):

For all positive integers e, d,

(1_ye)m/e Zf (E)___ ( e ) ¢(e)
elm \F) *\(e.d)) ¢le/led)
fie,d)
X Z I+&+ -+ z) Proof:
5{;}?“" See Ref. 2.
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Fig. 1. The Z channel
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